

Mallia selected as Innovation Tank finalist at IMCAS World Congress 2026

- Mallia Aesthetics will pitch its sCD83-based cosmetic innovation competing for the “Innovation of the Year” Award
- With 8T3 Essentials Hair Serum and 8T3 Essentials Lash & Brow Serum, Mallia launched two novel solutions for consumers desiring fuller hair, eyelashes and brows
- IMCAS World Congress is an annual research conference focused on medical aesthetics with over 20,000 attendees

Erlangen, Germany, January 21, 2026 – Mallia Aesthetics GmbH, a company focusing on the development and commercialization of cosmetic products to stimulate hair growth, was selected to pitch as a finalist for the Innovation Tank at the [IMCAS World Congress 2026](#), one of the largest events dedicated to dermatology, plastic surgery, and aging science held from January 29 to 31 in Paris, France. The Innovation Tank offers a global platform for start-ups to present breakthrough innovations to a high-profile jury.

During the Innovation Tank Pitch Session, scheduled for January 30 from 10:30 am – 12:30 pm, Prof. Dr. Alexander Steinkasserer will present “Soluble CD83 as a novel approach for hair growth”. The function of human soluble protein CD83 (sCD83) was first described by Prof. Steinkasserer¹, and he and his team have demonstrated its ability to activate hair growth via a multimodal mechanism of action. Based on these scientific findings, Mallia Aesthetics launched its hormone-free **8T3 Essentials Hair Serum**, designed to support and enhance hair density and thickness, and **8T3 Essentials Lash & Brow Serum**, formulated for promoting the growth and thickness of eyelashes and eyebrows. The 8T3 Essentials products, both based on MAL-838, a proprietary variant of sCD83, are available to consumers via [Mallia’s webshop](#).

“Being selected as an Innovation Tank finalist further validates the translational path we have taken, from academic discovery to consumer-ready application,” said **Prof. Dr. Alexander Steinkasserer, Co-founder and Managing Director of Mallia**. “With our 8T3 Essentials products, we are showing how insights from immunology, particularly around soluble CD83, can be responsibly and effectively applied in aesthetic science. IMCAS offers the ideal audience to discuss both the underlying biology and the broader potential of this approach.”

The IMCAS (International Master Course on Aging Science) World 2026 Congress is a key global event dedicated to dermatology, plastic surgery, and aging science. With over 20,000 participants at the previous conference, it aims to provide physicians, including plastic surgeons, dermatologists and medical aesthetic practitioners, with the latest academic updates and provide a platform for the latest evidence-based techniques and the newest industry innovations.

About sCD83

Soluble CD83 (sCD83) is an immunomodulatory protein that is currently being developed for the topical treatment of hair loss (MAL-856) and stimulation of hair growth (MAL-838). The soluble CD83 protein was first identified in 2001 by Mallia co-founder Prof. Steinkasserer. It has anti-inflammatory properties via the induction of resolution of inflammation, which promotes wound healing and induces new hair growth.² In addition, sCD83 has been shown to activate regulatory T cells (Tregs)³, which interact directly with hair follicles and can activate them.⁴ Furthermore, sCD83 inhibits cell death of hair follicles and directly activates follicular stem cells, as well as keratin production, thereby stimulating new hair growth. This multimodal mode of action distinguishes sCD83 from other topically applied hair growth agents.

Topically applied, sCD83 can directly reach the hair follicles but does not penetrate through the skin and thus does not enter the bloodstream. The effect is localized, which is a major advantage over systemic treatment options, which can cause severe side effects.

About hair loss

Hormone-related hair loss in men and women (androgenetic alopecia, or AGA) is the most common form of hair loss. Worldwide, more than 70% of men and 50% of women post menopause are affected by androgenetic alopecia. Another 147 million people suffer from immune-related, circular hair loss (alopecia areata, or AA^{5,6}).

Androgenetic alopecia usually progresses gradually and is due to genetic and hormonal factors. In men, it often leads to a receding hairline and baldness on the top of the head, while in women it causes thinning hair in the parting area. Alopecia areata causes circular hair loss on the scalp, face or other parts of the body. It occurs when the immune system erroneously attacks hair follicles, leading to immune-mediated hair loss.

About Mallia

Mallia Innovations GmbH, based in Erlangen, Germany, is the holding company strategically driving the proprietary development and commercialization of biopharmaceutical therapies and cosmetic applications of the immunomodulatory sCD83 protein, targeting hair growth, hair loss and other dermatological indications, including wound healing.

Mallia Therapeutics GmbH focuses on the clinical development of novel therapies for patients suffering from androgenetic alopecia or alopecia areata, among other conditions. MAL-856 is based on the scientifically proven immunomodulatory mode of action of sCD83, which has been investigated for close to 25 years by Mallia Co-founder Prof. Dr Alexander Steinkasserer.¹

Mallia Aesthetics GmbH focuses on cosmetic applications for the stimulation of hair growth, which are also based on the scientifically validated sCD83 protein. The Company develops innovative cosmetic products using MAL-838 that are marketed to specialists and consumers.

To purchase products from the 8T3 Essentials line, please visit our online shop: www.8T3.com

For more information, visit www.mallia.com and follow us on [LinkedIn](#), [Instagram](#), and [Facebook](#).

Mallia Contact:

Mallia Innovations GmbH
info@mallia.com

International media contact:

MC Services AG
Dr. Regina Lutz / Katja Arnold
Tel.: +49 (0)89 210 228 0
E-Mail: mallia@mc-services.eu

¹ Lechmann, M., Krooshoop, D. J., Dudziak, D., Kremmer, E., Kuhnt, C., Figdor, C. G., ... & Steinkasserer, A. (2001). The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. *The Journal of experimental medicine*, 194(12), 1813-1821. DOI: [10.1084/jem.194.12.1813](https://doi.org/10.1084/jem.194.12.1813)

² Royzman, D., Peckert-Maier, K., Stich, L., König, C., Wild, A. B., Tauchi, M., ... & Steinkasserer, A. (2022). Soluble CD83 improves and accelerates wound healing by the induction of pro-resolving macrophages. *Frontiers in Immunology*, 13, 1012647. DOI: [10.3389/fimmu.2022.1012647](https://doi.org/10.3389/fimmu.2022.1012647)

³ Bock, F., Rössner, S., Onderka, J., Lechmann, M., Pallotta, M. T., Fallarino, F., ... & Zinser, E. (2013). Topical application of soluble CD83 induces IDO-mediated immune modulation, increases Foxp3+ T cells, and prolongs allogeneic corneal graft survival. *The Journal of Immunology*, 191(4), 1965-1975. DOI: [10.4049/jimmunol.1201531](https://doi.org/10.4049/jimmunol.1201531)

⁴ Ali, N., Zirak, B., Rodriguez, R. S., Pauli, M. L., Truong, H. A., Lai, K., ... & Rosenblum, M. D. (2017). Regulatory T cells in skin facilitate epithelial stem cell differentiation. *Cell*, 169(6), 1119-1129. DOI: [10.1016/j.cell.2017.05.002](https://doi.org/10.1016/j.cell.2017.05.002)

⁵ Feinstein, R. P. (2022). Androgenetic alopecia.: <https://emedicine.medscape.com/article/1070167-overview>

⁶ Mostaghimi, A., Gandhi, K., Done, N., Ray, M., Gao, W., Carley, C., ... & Sikirica, V. (2022). All-cause health care resource utilization and costs among adults with alopecia areata: A retrospective claims database study in the United States. *Journal of Managed Care & Specialty Pharmacy*, 28(4), 426-434: DOI: [10.18553/jmcp.2022.28.4.426](https://doi.org/10.18553/jmcp.2022.28.4.426)